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Handling Noisy Annotation for Remote Sensing
Semantic Segmentation via Boundary-aware
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Abstract—In recent years, image segmentation has made signif-
icant progress, but acquiring annotated data is still a considerable
challenge, especially in remote sensing imagery (RSI). The
complex structure and inter-category confusion of RSI increase
the time-consuming and cost of pixel-level annotation, and noisy
annotations inevitably appear. This paper proposes a boundary-
aware knowledge distillation method (BAKD) to handle noisy
annotations by evaluating their uncertainty. BAKD consists of
two core strategies: Predictive Confidence Evaluation (PCE)
and Boundary-annotated Reliability Evaluation (BRE). The pre-
dictive confidence jointly decided by the teacher and student
networks reflects the annotation’s uncertainty. The boundary-
annotated reliability directly measures the annotation’s uncer-
tainty based on the distance from the annotation to the semantic
boundary. Leveraging these two types of uncertainty information,
BAKD assigns each sample a comprehensive boundary-aware
weight to identify samples with potential noisy annotations. This
alleviates the impact of noisy annotation on the model’s train-
ing and improves its generalization performance. Experimental
results show that BAKD achieves competitive semantic segmen-
tation performance on the Potsdam and Vaihingen benchmarks
compared with the state-of-the-art KD methods. In addition,
BAKD can be easily integrated into semantic segmentation
methods based on KD, extending their applicability in handling
noisy annotations.
Codes are available at https://github.com/sunyueue/BAKD.git.

Index Terms—Semantic Segmentation, Knowledge Distillation,
Sample Weighting, Noisy Annotation.

I. INTRODUCTION

SEMANTIC segmentation of remote sensing imagery (RSI)
has applied in many fields such as hazard assessment

[1], [2], urban planning [3], [4], farmland detection [5], [6]
and natural disaster detection [7]. The current deep neural
networks,e.g., DeepLab [8]–[11], PSPNet [12], HRNet [13],
have achieved remarkable success and are widely used in
semantic segmentation. However, these methods’ superiority
mainly relies on supervised learning, which requires a large
amount of manually annotated training data with high quality.
Compared with visual tasks such as image classification or
object detection, pixel-level annotation for semantic segmen-
tation tasks takes a long time and requires experts with domain
knowledge to implement [14], [15]. According to [16], it
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Fig. 1. The challenges in RSI semantic segmentation: (a) Factors that affect
the cost and quality of annotation in RSI. (b) Fine manual annotation is
expensive and laborious. (c) Coarse annotation reduces costs but limits the
segmentation model’s performance.

takes nearly 90 minutes to annotate a high-resolution natural
urban landscape image at the pixel level. Since RSI gener-
ally produces higher resolution and more complex structures
than other image types, the annotation cost would be much
higher [17]. Therefore, obtaining high-quality manual anno-
tations has become a significant obstacle to developing deep
learning models for RSI semantic segmentation tasks [18].

Due to the annotator’s subjective cognitive bias, the labeling
results will inevitably contain some errors. Complex RSI
is affected by factors such as occlusion and inter-category
confusion, and annotation errors are inevitable [19]. As shown
in the green box in Fig. 1 (a), the tall building and its
shadow occlude the low vegetation, rendering the occluded
area invisible in RSI and introducing annotation uncertainty.
In complex scenes with intricate backgrounds or overlapping
objects, the pixel features of objects from different categories
can be easily confused. As shown in the red box in Fig. 1,
the similarities between trees and low vegetation often lead
to annotation errors. Additionally, small targets like the car
illustrated in the yellow box in Fig. 1 (a) pose challenges in
obtaining precise location information, often resulting in mis-
aligned boundaries during annotation. These issues complicate
manual annotation and increase the risk of noisy annotations
in the semantic boundary. Given that manual annotation is
time-consuming and prone to many annotation errors in the
semantic boundary, we leverage coarse annotations to train our
semantic segmentation model. While the coarse annotations in
Fig. 1 (c) may overlook finer details along semantic boundaries
in Fig. 1 (b), leading to pixel-by-pixel boundary misalignment,
they offer a significant reduction in annotation costs.

Noisy annotations within coarse annotations make super-
vised learning prone to overfitting bias, hindering the segmen-
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tation model’s ability to grasp correct knowledge and limiting
its performance upper bound [20]. Co-learning methods [21]–
[23] employ dual models to select low-loss samples for learn-
ing to improve the model’s performance on noisy annotations.
However, these techniques predominantly focus on image-
level sample selection and have limited applicability to pixel-
level semantic segmentation tasks. Knowledge Distillation
(KD) [24] leverages soft labels from the teacher model in
place of single hard labels because soft labels contain richer
category relationship information. Soft labels enhance the
student model’s performance compared to rigid hard labels,
which may be noisy in coarse annotations. Studies [25], [26]
also affirm that label smoothing and KD strategies enhance
the model’s performance under different degrees of noisy
annotations. Semantic segmentation methods based on KD
[27]–[31] leverage diverse supervision information from the
teacher network to effectively enhance the student network’s
robustness on noisy annotations. Nonetheless, these methods
overlook the teacher network’s potential to guide the student
network in screening noisy annotations and learning correct
ones. Additionally, they fail to fully consider leveraging
boundary information from coarse annotations to guide model
training. Noisy annotations in coarse annotations will cause the
model to learn incorrect annotation information, particularly at
the semantic boundary where this impact is more pronounced.
Therefore, investigating how the teacher model can guide in
handling noisy annotations and effectively utilizing boundary
information from coarse annotations is crucial for extending
the applicability of KD in coarsely annotated RSI.

To address the challenge posed by coarse annotations in
complex scenarios, we propose a new boundary-aware knowl-
edge distillation framework (BAKD) based on annotation
uncertainty. We devise two uncertainty evaluation strategies to
derive the comprehensive boundary-aware weight: Predictive
Confidence Evaluation (PCE) and Boundary-annotated Relia-
bility Evaluation (BRE). PCE leverages the teacher and student
networks’ prediction discrepancy to collaboratively evaluate
the predictive confidence for each sample. Given that coarse
annotations may contain noisy annotations at the semantic
boundary, we directly evaluate the annotations’ reliability
based on the distance from the annotation to the semantic
boundary. During training, BAKD allocates a comprehensive
boundary-aware weight to each sample by fusing these two
types of uncertainty information. Subsequently, BAKD screens
training samples based on the boundary-aware weight and
identifies samples with potentially noisy annotations. For these
samples, BAKD allocates lower weights to mitigate their
negative impact on the student network training.

The main contributions of this paper are therefore:
1) We propose an innovative boundary-aware knowledge
distillation (BAKD) framework to address noisy anno-
tation. It can be seamlessly integrated with mainstream
semantic segmentation methods to extend their applica-
bility in handling noisy annotations.
2) Considering the characteristics of coarse annotations,
we devise two uncertainty evaluation strategies: PCE
suppresses noisy annotations by combining the predic-
tive confidence of teacher and student networks. BRE

leverages the distance from annotation to the semantic
boundary to obtain annotated reliability and suppress the
negative impact of noisy annotations.
3) Extensive experiment on the ISPRS Potsdam and
ISPRS Vaihingen datasets validates the effectiveness
and practicability of BAKD. Compared with mainstream
methods, BAKD facilitates more stable model training in
noisy annotations and significantly enhances the model’s
segmentation performance.

Subsequently, in Section II, we provide a concise overview
of the related work in the domain of semantic segmentation
based on KD and inaccurate supervision. Section III provides
a detailed description of our proposed BAKD method. Sec-
tion IV presents extensive experiments on two classic RSI
semantic segmentation datasets, demonstrating the superiority
of BAKD. Conclusions are articulated in Section V.

II. RELATED WORK

A. Semantic Segmentation based on Knowledge Distillation
Hinton et al. [24] first introduced the concept of knowledge

distillation (KD). Most previous studies on KD, such as [30],
[32], focused on image classification. However, image-level
KD does not take the locally structured information for se-
mantic segmentation into account, so it has natural defects for
pixel-level semantic segmentation. Most efforts have focused
on defining the knowledge for the segmentation task to solve
this problem. Liu et al. [31]extracted structured knowledge
from the teacher network to the student network by using two
structured distillation schemes. Wang et al. [33] put forward
a new intra-class feature variation distillation (IFVD), which
transformed the cumbersome teacher model into a compact
student model. Shu et al. [29] introduced a new channel-wise
KD method that minimized differences between teacher and
student networks by utilizing asymmetric KL divergence. Feng
et al. [28] improved the classification accuracy of existing
compact networks by capturing similar knowledge in the pixel
and category dimensions, respectively. To solve the problem
that the previous techniques ignore the global semantic rela-
tionship between pixels in different images, Yang et al. [27]
attempted to model pixel-pixel and pixel-region comparison
relationships in semantic segmentation tasks as knowledge and
transfer global pixel correlation from teachers to students for
semantic segmentation.

However, these methods overlook the teacher network’s
capability to guide the student network to screen noisy annota-
tions and learn correct annotations in noisy annotation scenar-
ios. To address this problem, BAKD allocates lower weights
to samples with noisy annotations by jointly evaluating the
annotation’s uncertainty from teacher and student networks.
Additionally, previous methods fail to consider how to leverage
boundary information from coarse annotations to guide model
training. BAKD leverages the distance from the annotation to
the semantic boundary to evaluate the annotation’s uncertainty
and suppresses the noisy annotation’s negative impact.

B. Classification from Noisy Annotations with Co-Learning
Co-learning was originally proposed as a strategy for image

classification tasks with noisy labels. Han et al. [22] demon-
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strated that collaborative training effectively deals with label
noise. Co-learning improved the model’s performance on noisy
data by utilizing two models and selecting small loss samples
from the samples for learning. Among them, Decouple [21]
proposed how to measure the disagreement between the two
models and decide when and how to update the model pa-
rameters based on the disagreement. Co-teaching [22]and Co-
teaching+ [23] maintained two independent DNN networks,
each selected samples that it believed to have more minor
losses and passed them to the other network for further train-
ing. Each network back-propagated the small batch selected
by its peer network to update itself. Compared with Co-
teaching [22], Co-teaching+ [23] also introduced a decoupled
divergence strategy, which first screened out samples with
inconsistent predictions and then selected small loss samples
from these samples for training. However, these image-level
sample selection methods have certain limitations. In the
presence of significant noisy annotations in the dataset, simply
discarding entire images inevitably leads to overfitting, a
phenomenon confirmed in subsequent experiments. Therefore,
our BAKD utilizes two models to evaluate the predictive
confidence of each pixel from a pixel-level perspective and
screen out correct annotations to train the model.

C. Semantic Segmentation from Noisy Annotations

Image segmentation from noisy annotations is a critical
problem. Recent studies addressed this problem by explicitly
considering systematic human labeling errors [34] and modi-
fying the segmentation loss to increase robustness [35], [36].
Other works proposed utilizing two interconnected networks to
learn together to discover noisy gradient information [37]. Al-
ternatively, they learned high-level spatial structures of images
and used them as supervisory signals to mitigate the impact
of incorrect annotations [38]. However, the disadvantage of
these methods is that some samples with completely clean
annotations are required. Liu et al. [39] proposed adaptively
triggered online object-wise label correction (AIO2) to address
label noise arising from incomplete label sets. However, AIO2
is only applicable to binary segmentation tasks.

In recent research, Liu et al. [40] proposed an adaptive
early learning correction (ADELE) method, which monitors
the IoU curves of each class to detect the onset of the memory
stage. However, ADELE [40] requires the recording of the
IoU values for each pixel in every training iteration, which
imposes significant demands on memory and computational
resources, diverging from practical application requirements.
In addition, the ADELE paper also points out that the success
of ADELE depends on the quality of the initial annotations.
When the initial annotation quality is poor, it is difficult to
achieve the correction conditions and the errors cannot be
completely corrected. In contrast, BAKD’s evaluation strategy
can still effectively identify these noisy annotations in the case
of severe noisy annotations. Fang et al. [41] drew inspira-
tion from the Co-teaching concept in image classification to
design a reliable mutual distillation (RMD) method, which
leverages the collaboration of two segmentation models to
filter out label noise from coarse annotations. However, the

confidence of small targets is often low in RSI segmentation,
and RMD’s filtering strategy may excessively eliminate small
target classes, resulting in insufficient training samples and
overfitting. Furthermore, the mutual training between the two
models can lead to interference, particularly in the early
stages, where a poorly performing model may adversely affect
the learning performance of the other model. In contrast,
BAKD incorporates a warm-up phase that utilizes a pre-
trained teacher model to convey reliable knowledge, thereby
enhancing the stability and efficiency of the learning process.

D. Prediction Uncertainty in Remote Sensing Imagery

The complex structure of remote sensing imagery, con-
fusion between categories, and noisy annotations in coarse
annotations make it unavoidable that the current segmentation
network would misjudge a certain category, which leads to un-
certainty in model prediction. Therefore, solving the problem
of prediction uncertainty is the key to further improving the
segmentation performance of the model.

To this end, Dong et al. [42] estimated the uncertainty of
the prediction by using entropy measurement to identify the
pixels that need to be updated. Chen et al. [43] employed the
class probability values predicted by the model to mine high-
confidence samples from images with coarse class annotations
as pseudo-labels. Cao et al. [44] used the absolute difference
of probability maps as an uncertainty-aware analysis tool
to obtain more reliable pseudo-labels. In the latest research,
Lyu et al. [45] introduced an uncertainty analysis method to
improve the accuracy of semantic segmentation by improv-
ing the utilization of remote sensing image features. Li et
al. [46] proposed an uncertainty-aware network (UANet) that
gradually guides attention to uncertain pixels during feature
interaction. Li et al. [47] also proposed an uncertainty-aware
detail-preserving network (UADPNet), which introduced an
arbitrary uncertainty estimator at the data level to obtain an
assessment of uncertainty and highlighted uncertain pixels
through an uncertainty-aware fusion module (UAFM).

However, these methods about prediction uncertainty rely
on the model’s prediction to measure uncertainty. For in-
stance, UANet [46] assessed the uncertainty of foreground
and background pixels by calculating the pixel’s probability,
depending entirely on the model’s predictions. Similarly, the
UAFM module in UADPNet [47] also utilized the model’s
prediction to measure uncertainty. The student network has
not yet converged in the early stages of model training, and
the predictions may not be sufficiently reliable, leading to
errors in uncertainty evaluation that subsequently affect the
model’s training effectiveness. In contrast, BAKD combines
KD to jointly guide the student model’s training using teacher
and student networks’ predictions, providing a more reliable
uncertainty assessment in the early training phase.

III. THE METHODOLOGY

This section presents our method’s complete workflow. We
start by introducing the loss function paradigm for semantic
segmentation with knowledge distillation (KD) in Subsection
III-A. In Section III-B, we define Boundary-aware Knowledge
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Distillation (BAKD), which combines two evaluation strate-
gies: Predictive Confidence Evaluation (PCE) and Boundary-
annotated Reliability Evaluation (BRE). Subsequently, we
elaborate on the specific implementation details of the PCE
and BRE strategies in Sections III-C and III-D, respectively.
Finally, we discuss integrating BAKD into other semantic
segmentation methods based on KD in Subsection III-E.

A. Preliminary

Semantic segmentation is a dense pixel-level prediction task
that assigns a specific class to each pixel in an image. Given
an input image I with dimensions W × H × 3, the feature
extractor of a segmenter first extracts a feature map F , where
H and W represent the height and width of the input image
and feature map, respectively. The categorical logit map Z
is generated from feature map F by applying a classifier. In
image semantic segmentation tasks, the cross-entropy (CE)
loss is commonly used to measure the difference between
the predicted probability distribution σ (Zh,w) and the ground
truth label yh,w. Optimization using CE as task loss:

Ltask =
1

H ×W

H∑
h=1

W∑
w=1

CE (σ (Zh,w) ,yh,w) (1)

Specifically, for each pixel at position (h,w), the CE loss
is computed as:

CE (σ (Zh,w) ,yh,w) = −
C∑

c=1

y
(c)
h,w log

(
σ
(
Z

(c)
h,w

))
(2)

where yh,w (yh,w ∈ {0, 1}C) is the one-hot encoded ground
truth label at the (h,w)-th pixel, y

(c)
h,w denotes the value

corresponding to the c-th class of the one-hot encoded label at
the (h,w)-th pixel, and Zh,w denotes the output logits for the
(h,w)-th pixel. The softmax function σ generates the category
probability.

The existing KD methods usually employ a pixel-wise
alignment among class probabilities between a cumbersome
teacher network t and a lightweight student network s to obtain
a distillation loss, which can be formulated as follows:

Lkd =
1

H ×W

H∑
h=1

W∑
w=1

KL

[
σ

(
Zt

h,w

T

)
∥σ
(
Zs

h,w

T

)]
(3)

where Zt
h,w and Zs

h,w represent the output logits for the
(h,w)-th pixel produced from the teacher and the student
network, respectively. σ function calculates the category prob-
ability of the (h,w)-th pixel generated by the student and
teacher networks, respectively. The parameter T represents the
temperature taken by distillation and reflects the label’s soft-
ening degree. For a fair comparison with previous works [27],
[31], we set T =1 in our experiments. KL denotes the
Kullback-Leibler divergence, which measures the difference
between two probability distributions. Since the KD methods
we compared employ Kullback-Leibler (KL) divergence, we

choose the most commonly used KL divergence as the distil-
lation loss, which can be formulated as follows:

DKL (P∥Q) =

C∑
c=1

Pc log

(
Pc

Qc

)
(4)

where P = σ
(

Zt
h,w

T

)
, represents the probability distribution

of the c-th class at position (h,w) from the teacher network,
and Q = σ

(
Zs

h,w

T

)
, represents the probability distribution of

the same class at the same position from the student network.

B. Define the Boundary-aware Knowledge Distillation

Learning the semantic boundary is a significant challenge
in segmentation tasks, especially given that most noisy anno-
tations tend to occur at these boundaries. We plan to generate
a pixel-level loss weight to suppress the noise of the coarse
annotations, enabling the model to learn from the correct
annotations. Based on the above inspiration, we propose a
boundary-aware knowledge distillation (BAKD) method that
captures the annotations’ uncertainty through two strategies:
Predictive Confidence Evaluation (PCE) and Boundary-
annotated Reliability Evaluation (BRE).

As shown in Fig. 2, we initially compute the prediction
discrepancy between the teacher and the student networks’
predictions and corresponding annotations during the training
process. Then, we collaboratively evaluate to obtain a dynamic
predictive confidence score PC based on this discrepancy.
The lower PC score indicates the higher annotation’s un-
certainty and the more likely it is a noisy annotation. Given
that noise typically intensifies near the semantic boundary in
coarse annotations, we calculate the distance Ddis from each
annotation to these boundaries. Subsequently, employing our
devised exponential normalization approach, we derive the
Boundary-annotated reliability score BR. Annotations closer
to boundaries exhibit lower reliability, potentially indicating
noisy annotations. Consequently, a comprehensive boundary-
aware weight WBAW is assigned to each sample by combining
the PC and BR, where BR complements PC’s boundary
considerations. By comprehensively considering these two
types of information, BAKD effectively identifies samples
with potentially noisy annotations. We incorporate the weight
WBAW into the loss function using Eq. 5 to update the
student network parameters. Details on generating WBAW are
elaborated below.

LBAKD = WBAW · Ltask + Lkd (5)

C. Predictive Confidence Evaluation (PCE) Strategy

Screening samples with noisy annotations requires evalu-
ating the annotation’s uncertainty as a starting point. Tradi-
tionally, predictive confidence from the network serves as a
pivotal metric for evaluating the annotation’s uncertainty. Low
confidence typically indicates classification difficulty, while
it often signifies mislabeling in noisy supervised datasets.
After introducing KD, the most straightforward approach
involves using the prediction discrepancy between the reliable
teacher network’s prediction and corresponding annotation as
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Fig. 2. Overview of our BAKD method. The PCE strategy collaboratively evaluates the prediction discrepancy between the teacher and student networks to
obtain the predictive confidence score PC for each sample. The BRE strategy employs the distance transformation (DT) operation to calculate the distance
Ddis from each annotation to the semantic boundary. Subsequently, our designed parameterized exponential normalization process determines the boundary-
annotated reliability score BR. Finally, the combination of PC and BR yields the comprehensive boundary-aware weight WBAW .

a confidence indicator. Higher prediction discrepancies usually
suggest potentially noisy annotations. However, relying solely
on the teacher network’s prediction discrepancy to evaluate
annotation’s uncertainty overlooks the student network’s per-
spective and cognitive processes. Just as a question deemed
easy by a teacher can be challenging for some students.
Therefore, incorporating the student’s predictions to refine the
annotation’s evaluation criteria becomes essential.

Based on this motivation, we propose a teacher-student
cooperation method to evaluate the annotation’s uncertainty
and dynamically adjust the collaboration weights between the
teacher and student networks as the student network’s cogni-
tive levels increase. Initially, for each pixel in the image, the
cross entropy is used to calculate the prediction discrepancy
between predictions Z and the corresponding annotation y of
the teacher and the student networks, respectively:

PDs = −
C∑

c=1

y
(c)
h,w · log

(
σ
(
Z

(c)
s(h,w)

))
(6)

PDt = −
C∑

c=1

y
(c)
h,w · log

(
σ
(
Z

(c)
t(h,w)

))
(7)

where C denotes the total number of classes. σ
(
Z

(c)
s(h,w)

)
and

σ
(
Z

(c)
t(h,w)

)
are probabilities that the (h,w)-th pixel belongs to

the c-th class for the student and teacher networks respectively.
Subsequently, the predictive confidence score PD for each

annotation is derived by dynamically weighting the prediction
discrepancy between the teacher and student networks:

PD = λ · PDs + (1− λ) · PDt (8)

where λ is a weight adjustment parameter. Selecting an appro-
priate λ value is critical. Intuitively, the student network has
not yet converged in the early stages of model training. Relying
on the student network to evaluate predictive confidence may
transmit and amplify errors, posing challenges to correcting
the student network [48]. Conversely, the teacher network’s
supervisory information tends to be more precise and depend-
able. Therefore, we introduce a warm-up strategy to ensure
the stability and reliability of the confidence evaluation. In
practice, we set the initial λ value to 0. As training progresses,
the student network’s performance has dramatically improved,
enabling it to accurately grasp its needs and play a more
significant role in predictive confidence evaluation. Therefore,
λ gradually increases, indicating that the student network is
constantly improving. This also means that the teacher network
will continue to play a role in the later training stage even if
the student network performs well.

Subsequently, normalizing the confidence scores within the
range of [0,1] yields a predictive confidence score PC for
each sample:

PC = exp {−PD} (9)

The PC map in Fig. 2 reveals that low-confidence pixels
cluster near the semantic boundary, illustrating PC’s sensitiv-
ity to annotation uncertainty in boundary regions. Algorithm 1
provides the pseudo-code illustrating PCE strategy to generate
confidence score PC in the overall training pipeline.

D. Boundary-annotated Reliability Evaluate (BRE) Strategy

Discussion: In annotating remote sensing images, identi-
fying noisy annotations near the semantic boundary poses a
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(a) Gaussian blur (b) Min-max normalization
(� = 1.0)

(d) Exponential normalization
(� = 0.1)
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Fig. 3. Utilizing the exponential normalization method on the boundary map of annotated images to generate annotated reliability scores offers distinct
advantages. Adjusting the parameter α based on the noise level present at the dataset’s boundary makes it possible to control the distribution of scores in the
boundary regions flexibly. Specifically, when α =1.0, the reliability scores for smaller regions near the boundary decrease (c). When α = 0.1, the reliability
scores also decrease for larger regions near the boundary (d).

Algorithm 1 Predictive Confidence Evaluation (PCE)
Input: Input images x, labels y, the parameter of teacher
network θt, the iterations of warm-up iteration iterwarm−up,
cross-entropy loss function CE, Kullback-Leibler divergence
function KL, Softmax function σ, weight adjustment
parameter λ.
Output: Predictive confidence score PC.

1: if iter ≤ iterwarm−up then
2: PDt = −

∑C
c=1 y

(c)
h,w · log

(
σ
(
Z

(c)
t(h,w)

))
3: PC = exp {−PDt}
4: else
5: PDs = −

∑C
c=1 y

(c)
h,w · log

(
σ
(
Z

(c)
s(h,w)

))
6: PDt = −

∑C
c=1 y

(c)
h,w · log

(
σ
(
Z

(c)
t(h,w)

))
7: PD = λ · PDs + (1− λ) · PDt

8: PC = exp {−PD}
9: end if

10: return PC

significant challenge. The closer to the semantic boundary, the
lower the annotated reliability. We explore three distinct meth-
ods to evaluate annotated reliability based on the boundary
information of the annotation map:

(1) Gaussian blur: Initially, we apply Gaussian blurring to
the binary boundary map to derive an annotated reliability
map. For the boundary map, only the pixel value at the
boundary is 0, and the rest of the pixel values are 1. After
Gaussian smoothing, only the pixels closest to the boundary

will be averaged to a smaller value. This method may not be
ideal for datasets with significant noisy annotations. In addi-
tion, Gaussian smoothing will blur the noise and inadequately
capture the annotated reliability at the boundary position
well, as shown in Fig. 3 (a). (2) Min-Max Normalization:
We calculate the distance from each pixel to the boundary
using the distance transform method to create a distance map.
After normalization with min-max scaling, pixels near the
boundary receive lower weights, as shown in Fig. 3 (b).
This approach may not be suitable for datasets with light
boundary noise. In addition, too many pixels are assigned
lower weights, leading to insufficient training samples and
causing overfitting problems. (3) Exponential Normalization:
Another more flexible method is to utilize the parameterized
exponential function 1 − exp {−α · dh,w} to normalize the
distance map, thereby obtaining the annotated reliability map.
By adjusting the parameter α according to the boundary noise
level, we can flexibly regulate the speed of weight decrease in
the boundary area, as shown in Fig. 3 (c) and Fig. 3 (d).

After the experimental comparison, the parameterized ex-
ponential normalization method can better reflect the degree
to which each annotation belongs to the semantic boundary
(confirmed in subsequent experiments). Subsequently, we in-
tegrate this strategy into the knowledge distillation process.
Specifically, as shown in Fig. 2, we first obtain the boundary
image of the coarse annotation map, which can be directly
obtained through a straightforward traversal algorithm that
examines the pixel’s neighborhood. Any pixel with a category
annotation conflicting with its neighbors is flagged as a bound-
ary pixel. Subsequently, the distance map Ddis is generated
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Algorithm 2 Boundary-annotated Reliability Evaluation
(BRE)
Input: Input images x, labels y, parameter α.
Output: Boundary-annotated reliability score BR.

1: Step 1: Generate Boundary Image
2: Initialize an empty boundary image e with the same size

as y
3: for each pixel (h,w) in y do
4: if any neighboring pixel of (h,w) has a different label

then
5: Set e(h,w) = 1 {Mark as boundary pixel}
6: else
7: Set e(h,w) = 0 {Mark as non-boundary pixel}
8: end if
9: end for

10: Step 2: Calculate Distance Image
11: dh,w = DistanceTransform(e) {Compute distance from

the nearest boundary for the h,w-pixel on label y}
12: Step 3: Calculate Boundary-annotated Reliability
13: BR = 1− exp {−α · dh,w}
14: return BR

by calculating the Euclidean distance from each pixel to
the nearest boundary pixel using the distance transformation
formula. Ddis effectively represents the distance from each
annotation to the nearest semantic boundary.

Following this, we introduce the boundary-annotated re-
liability evaluation function BR based on the exponential
normalization to characterize this relationship:

BR = 1− exp {−α · dh,w} (10)

where dh,w represents the Euclidean distance from pixel
h,w to the nearest boundary, with α serving as a parameter
dictating the function’s shape. The design of this function
follows the following principles: When pixel h,w is distant
from the boundary, dh,w is large, and Wdis approaches 1, sig-
nifying high annotated reliability. When pixel h,w is near the
boundary, dh,w diminishes, and Wdis approaches 0, indicating
reduced annotated reliability. α controls the diffusion range of
boundary uncertainty and can be adjusted according to actual
conditions. In Fig. 2, the boundary-annotated reliability score
BR of pixels near the boundary is small, denoting pronounced
uncertainty in their annotations. Algorithm 2 provides the
pseudo-code illustrating BRE strategy to generate boundary-
annotated reliability score BR.

The PCE strategy combines the prediction confidence scores
of the student and teacher networks. As the student’s cognitive
level improves, the collaborative weight of the student and
teacher networks is dynamically adjusted to obtain a more
accurate prediction confidence score PC. The BRE strategy
uses the edge information of the coarse annotation and designs
a parameterized exponential function normalization method,
which can dynamically adjust the boundary reliability score
BR of each sample according to the noisy degree of the
semantic boundary. In our method, we combine the predictive

confidence score PC and the boundary-annotated reliability
score BR to obtain the comprehensive boundary-aware weight
WBAW . Notably, BR exclusively influences the weights of
pixels near the boundary, with those closer to the object’s
center maintaining weights close to 1. If PC and BR are
combined using average or proportional weighting, the BR
will weaken the effect of the PC for pixels close to the object’s
center. We opt for the minimum value between the two as the
final boundary-aware weight WBAW :

WBAW = min(PC,BR) (11)

WBAW can ensures that BR predominates near the seman-
tic boundary while enabling PC to have a stronger impact
elsewhere. By selecting the minimum value, we can give
full play to the advantages of the two uncertainty evaluation
strategies and effectively mitigate the negative impact of noise
annotations on model training.

Subsequently, we adopt the method of assigning low
weights to mitigate the negative impact of these samples on
the student network and apply the weight WBAW to the loss
function Ltask of the semantic segmentation task:

Lweight = WBAW · Ltask (12)

Finally, we employ the BAKD strategy to calculate the
weighted segmentation loss Lweighted for each pixel, guid-
ing the student network’s parameter updates by minimizing
LBAKD:

LBAKD = Lweighted + Lkd = WBAW · Ltask + Lkd (13)

E. Integrating with Other Approaches

Since BAKD only affects Ltask loss, it can be integrated
with other KD methods without introducing additional op-
timization goals. In experiments, we integrate BAKD with
AT [30], CWD [29], DSD [28] and CIRKD [27] methods.
Taking the AT [30] and CIRKD [27] methods as examples, we
will demonstrate how to integrate BAKD into AT and CIRKD
and derive the corresponding distillation loss formula.

1) The distillation loss of AT method after integrating
BAKD.

The total loss defined by AT [30]:

LAT = Ltask +
β

2

∑
jϵI

||
Qj

S

||Qj
S ||2

−
Qj

T

||Qj
T ||2

||2 (14)

where Qj
S and Qj

T are respectively the j-th pair of student and

teacher attention maps in vectorized form, Qj
S

||Qj
S ||2

and Qj
T

||Qj
T ||2

are the result of using l2-normalization attention maps. The
calculation details of β

2

∑
jϵI

|| Qj
S

||Qj
S ||2

− Qj
T

||Qj
T ||2

||2 are described in

AT [30]. Ltask is the semantic segmentation task loss function
mentioned in Section III-A, represented by the cross entropy
function.

The distillation loss of BAKD :

LBAKD = WBAW · Ltask + Lkd (15)
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where Lkd is the pixel-level distillation loss mentioned in Sec-
tion III-A, represented by Kullback-Leibler (KL) divergence.

The distillation loss of AT [30] method after integrating
BAKD can be derived:

LAT BAKD = WBAW · Ltask +
β

2

∑
jϵI

||
Qj

S

||Qj
S ||2

−
Qj

T

||Qj
T ||2

||2

(16)
In the new loss term described above, we follow the default

parameter settings in AT [30] and set the weighting parameter
β to 103 divided by the number of elements in the attention
map and batch size for each layer. We only modify the weights
for each pixel by incorporating the relative difficulty factors
obtained through BAKD in front of the Ltask.

2)The distillation loss of CIRKD method after integrating
BAKD.

The total loss defined by CIRKD [27]:

LCIRKD = Ltask + Lkd + αLbatch p2p + βLmemory p2p

+γLmemory p2r

(17)

where Lbatch p2p represents distillation loss of mini-batch-
based pixel-to-pixel, Lmemory p2p denotes distillation loss of
memory-based pixel-to-pixel, Lmemory p2r denotes distillation
loss of memory-based pixel-to-region. α, β and γ are the
weight balance parameters. The further calculation details
of Lbatch p2p, Lmemory p2p and Lmemory p2r are described
in [27].

The distillation loss of BAKD :

LBAKD = WBAW · Ltask + Lkd (18)

After integrating BAKD, the modified distillation loss of the
CIRKD method is derived as follows:

LCIRKD BAKD =WBAW · Ltask + Lkd + αLbatch p2p

+ βLmemory p2p + γLmemory p2r (19)

In this new loss term, we follow the default parameter settings
in CIRKD [27], setting the weighting parameter α to 1, β to
0.1, and γ to 0.1. Moreover, BAKD can seamlessly integrate
with other semantic segmentation methods based on KD. This
integration allows us to enhance the performance of the student
network further from existing approaches.

IV. EXPERIMENTS AND RESULTS ANALYSIS

To verify BAKD’s effectiveness, we conduct extensive
experiments on RSI semantic segmentation datasets ISPRS
Potsdam and ISPRS Vaihingen. Subsequently, we compare
BAKD with other methods and summarize our experiment.

A. Experimental Setup

1) Datasets: We validate the proposed method by per-
forming experiments on high-resolution aerial images of two
German cities, Vaihingen and Potsdam, acquired through flight
missions provided by the 2-D Semantic Annotation Challenge
organized by Working Group II/4 of the International Society

for Photogrammetry and Remote Sensing (ISPRS) [49]. The
ISPRS Vaihingen dataset consists of 33 images, and each
image has approximately 2100×2100 pixels and a spatial
resolution of 9 cm. Each image has three bands, corresponding
to near-infrared (NIR), red (R) and green (G) wavelengths.
Each pixel in the image is classified into one of 6 land
cover categories (buildings, cars, low vegetation, impervious
surfaces, trees, and clutter/background). We select 16 images
for training, 8 images for validation, and 9 images for testing.
The ISPRS Potsdam dataset consists of 38 high-resolution
aerial images, each with a pixel size of 6000×6000 and a
spatial resolution of 5 cm. All images are annotated with the
same 6-category pixel-level labels as the Vaihingen dataset.
We select 24 images for training, 7 images for validation,
and 7 images for testing our model. In our experiments, we
use a 512×512 patch size, which fits our memory budget.
Since CNN-based semantic segmentation models are prone
to boundary effects, we use 256-pixel overlapping patches to
reduce this effect.

2) Simulation of Annotation Errors: We simulate the types
and quantities of coarse annotations in the training data to
analyze the impact of specific errors. The baseline model is
based on the original training labels from the dataset, assuming
they are correct. This allows us to compare our baseline
with current state-of-the-art results and further investigate the
effects of simulated annotation errors on model performance.
Our goal is to generate labels that closely resemble human
annotation errors [34], which are shown in Fig. 4, and below
are the coarse annotations obtained through three different
methods:

A. Mask Dilation (Subsequent experiments were mainly
based on this noise type):

1. Randomly Generate Dilation Iterations: Randomly gen-
erate dilation iterations suited to the characteristics of differ-
ent classes. In the noisy supervised Vaihingen and Potsdam
datasets, the dilation iterations for large classes (such as
Building, Low vegetation, Impervious surface, and Tree) are
randomly assigned an integer range of 3 to 10. For small
object classes (such as Car and Clutter), the iterations are
randomly assigned an integer range of 2 to 5. In the severely
noisy supervised Vaihingen and Potsdam datasets, the dilation
iterations for large classes are randomly assigned an integer
range of 7 to 15. For small object classes, the iterations are
randomly assigned an integer range of 4 to 6.

2. Perform Dilation Operation: Apply the specified iteration
counts to the foreground masks of each class to expand the
class boundaries.

B. Mask Erosion:
1. Randomly Generate Erosion Iterations: Randomly gener-

ate erosion iterations based on the characteristics of different
classes.The randomly set erosion iterations are consistent with
the dilation in A. Mask Dilation.

2. Perform Erosion Operation: Apply the specified iteration
counts to the foreground masks of each class to reduce the
class boundaries.

C. Relative Shift of Object Boundaries:
1. Generate Random Displacement: Generate random dis-

placements in both horizontal and vertical directions to de-
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(a) (b)

(c) (d)

Fig. 4. Annotations before and after introducing different annotation noise.
(a) Original annotation, (b) Annotation corrupted with random dilation, (c)
Annotation corrupted with random erosion, (d) Annotation corrupted with
shift.

termine the new position of each pixel. In the experiment,
we randomly select two integers within the ranges of -10 to
-5 and 5 to 10, respectively, as the horizontal and vertical
displacement amounts (we exclude the values from -5 to 0
and 0 to 5 due to their relatively small offsets).

2. Apply Displacement and Construct New Image: Calculate
the new coordinates after displacement and copy the original
pixel values to the new image; if new coordinates exceed the
boundaries, retain the original pixel values.

3) Network architecture: We employ DeepLabV3 [10] with
ResNet-101 backbone [50] as the teacher network for all ex-
periments. For student networks, we employ various segmenta-
tion architectures to verify the effectiveness of BAKD. Specif-
ically, DeepLabV3 with ResNet-18 backbone, PSPNet [12]
with ResNet-18 backbone and DeepLabV3 with MobileNetV2
backbone [51] are adopted. ResNet-101, ResNet-18, and Mo-
bileNetV2 backbone networks were all pre-trained on the
ImageNet [52] dataset.

4) Training strategy: Our framework is implemented in
PyTorch on two RTX 3090 GPUs. The networks are trained
using mini-batch stochastic gradient descent (SGD) with a
momentum of 0.9 and weight decay of 0.0005. We set the
number of iterations to 40,000. The learning rate is initialized
at 0.02 and is multiplied by (1− iter

itertotal
)0.9 during training.

Normal data augmentation techniques such as random flipping
and scaling in the [0.5, 2] range are applied during training.
The temperature T is set to be 1. The batch size is 16, and all
experiments are conducted using mixed-precision training. For
the noisy supervised datasets, we conduct ablation studies to
determine the optimal values for the parameter α. Specifically,
we set α = 0.8 for the noisy supervised Potsdam dataset and
α = 0.8 for the noisy supervised Vaihingen dataset. For origi-

nal annotated datasets and seriously noisy supervised datasets,
we set α to 1.0, as we do not conduct an ablation study for
these cases. Additionally, the parameter λ is initialized at 0
for the first 4,000 iterations and linearly increased to 0.5 over
the subsequent iterations.

5) Evaluation metrics: Following the standard setting, we
adopt two commonly used metrics to evaluate the performance
of different methods, including the mIoU (mean intersection
over union) and mF1 (mean F1).

1. Mean Intersection Over Union: mIoU is one of the
main indicators of semantic segmentation model performance,
which is defined as the average of the intersection over
union (IoU) of each category. Assuming that true positives
(TP), false negatives (FP), and false negatives (FN) represent
the number of pixels correctly classified, misclassified, and
missed, respectively, mIoU is defined as:

mIoU =
1

C

C∑
c=1

TPc

TPc + FPc + FNc
(20)

where C is the number of classes.
2. mF1: mF1 also considers TPc, FPc, and FNc, but

it focuses on the harmonic mean of precision and recall to
mitigate the effects of imbalanced class distributions. mF1 is
calculated as:

mF1 =
1

C

C∑
c=1

2× TPc

2× TPc + FPc + FNc
(21)

B. Performance

1) Performance Comparisons with Existing Methods on
Noisy Supervised Datasets: To verify the performance of
BAKD on a noisy supervised dataset, we compare it with
three related methods: 1. Mainstream semantic segmentation
methods based on KD (SSKD), including KD [24], AT [30],
CWD [29], DSD [28], CIRKD [27] and RDD [48]. In exper-
iments, we adopt DeepLabV3 with ResNet-101 backbone as
the teacher network, denoted as “Teacher”, and DeepLabV3
with ResNet-18 backbone as the student network, denoted as
“Student”. 2. Classification from Noisy Annotations with Co-
Learning (CNACL) method, including decoupling [21], co-
teaching [22] and co-teaching+ [23]. For a fair comparison, in
the experiment, we had the same teacher and student network
architecture as SSKD. 3. Semantic segmentation from noisy
annotations (SSNA), the typical ADELE [40] and RMD [41]
are employed as comparison methods. In the experiments,
we employ DeepLabV3 with ResNet-18 backbone as the
segmentation model.

For noisy supervised Vaihingen dataset. To validate the
performance of mIoU and mF1, we evaluate BAKD on the
noisy supervised Vaihingen dataset, as illustrated in Table I.
For classification from noisy annotations with the Co-Learning
(CNACL) method, the mutual supervision between two models
during training helps mitigate the impact of noisy annotations
to a certain extent. However, CNACL relies on image-level
noise filtering, and in noisy annotation semantic segmenta-
tion, noisy annotations usually appear in local areas without
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TABLE I
QUANTITATIVE SEGMENTATION RESULTS FOR OUR PROPOSED BAKD AND OTHER EXISTING METHODS ON THE NOISY SUPERVISED VAIHINGEN

DATASET, SHOWCASING IOU SCORES FOR THE FIVE CLASSES, ALONG WITH THE MIOU SCORE AND mF1 SCORE. THE BEST SCORE IN EACH COLUMN IS
HIGHLIGHTED IN BOLD, WHEREAS THE SECOND-BEST SCORE IS IN UNDERLINE. VALUES WITHIN PARENTHESES INDICATE THE PERFORMANCE

VARIANCE RELATIVE TO THE BASELINE MODEL (STUDENT).

Method IoU mIoU (%) mF1 (%)Imp.Surf. Building Low veg Tree Car
Classification from Noisy Annotations with Co-Learning (CNACL)

+Decoupling [21] 73.27 76.45 57.47 69.60 39.03 63.16 (↓ 1.83) 71.20 (↓ 2.69)
+Co-teaching [22] 74.56 77.84 58.42 70.05 45.07 65.19 (↑ 0.20) 72.78 (↓ 1.11)

+Co-teaching+ [23] 73.02 76.40 52.79 68.65 36.58 61.48 (↓ 3.51) 70.12 (↓ 3.77)
Semantic segmentation from noisy annotations (SSNA)

ADELE [40] 74.37 81.47 57.00 69.39 54.64 67.37 (↑ 2.38) 75.98 (↑ 2.09)
RMD [41] 73.01 79.27 56.27 69.64 55.13 66.66 (↑ 1.67) 75.23 (↑ 1.34)

Semantic segmentation based on KD (SSKD)
Teacher 74.18 79.46 57.47 69.34 63.52 68.79 77.04
Student 71.16 77.03 52.03 66.01 58.76 64.99 73.89

+KD [24] 72.30 77.96 53.40 66.71 61.31 66.34 (↑ 1.35) 74.96 (↑ 1.07)
+AT [30] 72.39 77.50 55.12 68.48 62.14 67.13 (↑ 2.14) 75.63 (↑ 1.74)

+CWD [29] 72.59 77.35 54.63 67.17 58.96 66.14 (↑ 1.15) 75.03 (↑ 1.14)
+DSD [28] 72.17 78.16 54.28 67.01 61.73 66.67 (↑ 1.68) 75.11 (↑ 1.22)

+CIRKD [27] 73.41 78.62 55.47 68.05 60.61 67.23 (↑ 2.24) 75.83 (↑ 1.94)
+RDD [48] 73.50 78.53 55.00 67.87 61.78 67.34 (↑ 2.35) 75.85 (↑ 1.96)

+Ours 73.85 79.81 58.34 69.80 58.91 68.14 (↑ 3.15) 76.37 (↑ 2.48)

Image GT

Student KD

Decoupling Co-teaching Co-teaching+ ADELE Teacher

AT CWD DSD CIRKD OursRDD

RMD

Fig. 5. Qualitative segmentation results for our proposed BAKD and other existing methods on the noisy supervised Vaihingen dataset. Legend—white:
impervious surfaces, blue: buildings, cyan: low vegetation, green: trees, yellow: cars, red: clutter/background. The red dashed boxes mark some areas where
the semantic segmentation result is obviously optimized. The semantic labels produced by BAKD are more consistent with the ground truth (GT). (Best
viewed in color.)

affecting the entire image. Consequently, discarding entire
images due to noise can lead to a scarcity of training samples,
potentially resulting in overfitting and diminished model per-
formance, notably in the segmentation of minority categories.
For instance, considering categories with a limited number of
instances like “Car”, excluding these samples during training
results in fewer instances of the “Car” category. This reduction
notably decreases the mIoU for the “Car” category across all
three CNACL methods compared to the baseline. The ADELE
method significantly enhances segmentation performance by
pixel-level correction of noisy annotations. Although ADELE
has also made great progress, our BAKD performs better.
Compared with ADELE, our BAKD improves the mIoU and
mF1 indicators by 0.77% and 0.39%, respectively. The RMD
method uses the collaboration of two segmentation models to
filter out label noise from coarse annotations and improve the
segmentation performance. Compared with RMD, the BAKD
method improves the mIoU and mF1 indicators by 1.48%
and 1.14% respectively. For Mainstream semantic segmenta-

tion methods based on KD (SSKD) method, all structured
KD methods improve the student network’s segmentation
performance compared to training without KD. Our BAKD
outperforms other KD methods regarding mIoU and mF1

with significant advantages. Compared with the basic student
network method without KD, BAKD improves the mIoU and
mF1 by 3.15%and 2.48% respectively. Compared with the
CIRKD method, BAKD improves the mIoU and mF1 by
0.91% and 0.54%, respectively. Compared with the state-of-
the-art RDD method, BAKD improves the mIoU and mF1

by 0.8% and 0.52%, respectively. In addition, the qualitative
results are shown in Fig. 5. The validity of our BAKD is
intuitively demonstrated, and the semantic labels produced by
BAKD are more consistent with the ground truth.

For noisy supervised Potsdam dataset. We also evaluate
BAKD on the noisy supervised Potsdam dataset, with the
experimental outcomes are detailed in Table II. Due to the
ample images in the Potsdam dataset, filtering image-level
samples does not lead to severe overfitting. Consequently, all
three CNACL methods alleviate the impact of noisy annota-
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TABLE II
QUANTITATIVE SEGMENTATION RESULTS FOR OUR PROPOSED BAKD AND OTHER EXISTING METHODS ON THE NOISY SUPERVISED POTSDAM DATASET,

SHOWCASING IOU SCORES FOR THE FIVE CLASSES, ALONG WITH THE MIOU SCORE AND mF1 SCORE. THE BEST SCORE IN EACH COLUMN IS
HIGHLIGHTED IN BOLD, WHEREAS THE SECOND-BEST SCORE IS IN UNDERLINE. VALUES WITHIN PARENTHESES INDICATE THE PERFORMANCE

VARIANCE RELATIVE TO THE BASELINE MODEL (STUDENT).

Method IoU mIoU (%) mF1 (%)Imp.Surf. Building Low veg Tree Car
Classification from Noisy Annotations with Co-Learning (CNACL)

+Decoupling [21] 79.63 87.14 70.26 70.17 69.02 75.24 (↑ 1.35) 79.64 (↑ 0.80)
+Co-teaching [22] 78.72 86.09 69.31 69.32 67.85 74.26 (↑ 0.37) 79.21 (↑ 0.37)

+Co-teaching+ [23] 79.76 87.52 70.65 70.89 70.01 75.77 (↑ 1.88) 79.81(↑ 0.97)
Semantic segmentation from noisy annotations (SSNA)

ADELE [40] 82.38 91.11 72.67 73.12 65.35 76.73 (↑ 2.84) 81.02 (↑ 2.18)
RMD [41] 82.74 90.72 71.58 73.04 64.37 76.49 (↑ 2.50) 80.82 (↑ 1.98)

Semantic segmentation based on KD (SSKD)
Teacher 80.75 89.04 72.52 74.44 69.30 77.21 81.27
Student 79.81 88.36 69.90 70.33 61.54 73.99 78.84

+KD [24] 81.16 89.38 71.77 71.97 67.99 76.45 (↑ 2.56) 80.86 (↑ 2.02)
+AT [30] 81.38 88.94 72.07 72.38 70.10 76.97 (↑ 3.08) 80.98 (↑ 2.14)

+CWD [29] 80.16 88.65 71.02 71.80 70.45 76.42 (↑ 2.53) 80.84 (↑ 2.00)
+DSD [28] 80.02 88.62 71.00 72.08 67.23 75.79 (↑ 1.90) 79.89 (↑ 1.05)

+CIRKD [27] 81.76 89.55 72.50 72.45 70.13 77.28 (↑ 3.39) 81.24 (↑ 2.40)
+RDD [48] 81.24 89.18 72.25 73.64 69.43 77.15 (↑ 3.16) 81.11 (↑ 2.27)

+Ours 81.70 89.28 72.73 73.91 70.76 77.68 (↑ 3.79) 81.67 (↑ 2.83)

Image GT

Student KD

Decoupling Co-teaching Co-teaching+ ADELE Teacher

AT CWD DSD CIRKD OursRDD

RMD

Fig. 6. Qualitative segmentation results for our proposed BAKD and other existing methods on the noisy supervised Potsdam dataset. The red dashed boxes
mark some areas where the semantic segmentation result is obviously optimized. The semantic labels produced by BAKD are more consistent with the ground
truth (GT). (Best viewed in color.)

tions to some extent, thereby enhancing model performance.
However, their performance falls short of semantic segmenta-
tion methods based on KD (SSKD). Although the two SSNA
methods achieved significant progress compared to the basic
student network, they are still inferior to our proposed BAKD.
Compared with ADELE, BAKD improves the mIoU and mF1

by 0.95% and 0.65% respectively. Compared with RMD,
BAKD improves the mIoU and mF1 by 1.19% and 0.85%
respectively. For the SSKD method, BAKD outperforms other
KD methods, further validating its effectiveness in semantic
segmentation tasks. Specifically, compared with the basic
student network method without KD, BAKD improves the
mIoU and mF1 by 3.69% and 2.83%, respectively. Compared
with CIRKD method, BAKD improves the mIoU and mF1

by 0.4% and 0.43%, respectively. Compared with the state-
of-the-art RDD method, BAKD improves the mIoU and mF1

by 0.53% and 0.56%, respectively. In addition, the qualitative
results are shown in Fig. 6, highlighting semantic labels that
align more closely with ground truth.

2) Performance Comparisons on seriously noisy supervised

datasets: To further verify the robustness of BAKD under
noisy annotations, we perform more severe erosion and di-
lation operations on the Vaihingen and Potsdam datasets to
generate datasets with seriously noisy annotations and con-
ducted experimental verification on these datasets.

For seriously noisy supervised Vaihingen dataset. We eval-
uated our BAKD on the seriously noisy, supervised Vaihingen
dataset. The experimental results are shown in Table III. In the
CNACL method, due to the serious noise in the annotation,
screening the training data excludes a large number of images.
Despite filtering out more noisy samples, severe overfitting
in the CNACL method led to only marginal improvements
compared to the baseline method, with performance even
decreasing in some categories. Specifically, during the training
process of Co-teaching, approximately half of the data was
discarded, resulting in an 8.62% decrease in the IoU of
the car category compared to the baseline method (Student).
Compared to Decoupling, BAKD improved the IoU for the
car category by 8.96%. Compared to Co-teaching, BAKD en-
hanced the IoU for the car category by 18.41%. Additionally,
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TABLE III
QUANTITATIVE SEGMENTATION RESULTS FOR OUR PROPOSED BAKD AND OTHER EXISTING METHODS ON THE SERIOUSLY NOISY SUPERVISED

VAIHINGEN DATASET, SHOWCASING IOU SCORES FOR THE FIVE CLASSES, ALONG WITH THE MIOU SCORE AND mF1 SCORE. THE BEST SCORE IN EACH
COLUMN IS HIGHLIGHTED IN BOLD, WHEREAS THE SECOND-BEST SCORE IS IN UNDERLINE. VALUES WITHIN PARENTHESES INDICATE THE

PERFORMANCE VARIANCE RELATIVE TO THE BASELINE MODEL (STUDENT).

Method IoU mIoU (%) mF1 (%)Imp.Surf. Building Low veg Tree Car
Classification from Noisy Annotations with Co-Learning (CNACL)

+Decoupling [21] 68.84 74.80 55.32 63.80 29.90 58.53 (↑ 0.86) 67.60 (↑ 0.67)
+Co-teaching [22] 67.63 70.02 46.45 55.91 20.45 52.09 (↓ 5.58) 62.89 (↓ 4.04)

+Co-teaching+ [23] 67.93 75.52 56.85 64.04 25.90 58.05 (↑ 0.38) 67.00 (↑ 0.07)
Semantic segmentation from noisy annotations (SSNA)

ADELE [40] 66.43 75.56 49.17 62.59 40.13 58.78 (↑ 1.11) 68.03 (↑ 1.10)
RMD [41] 68.50 74.37 53.46 62.89 38.29 59.50 (↑ 1.83) 68.21 (↑ 1.28)

Semantic segmentation based on KD (SSKD)
Teacher 70.45 77.01 57.86 64.25 41.56 62.23 70.42
Student 68.84 75.44 52.69 62.31 29.07 57.67 66.93

+KD [24] 68.32 75.58 53.82 62.33 35.97 59.20 (↑ 1.53) 68.18 (↑ 1.25)
+AT [30] 69.00 75.77 52.99 62.28 39.62 59.93 (↑ 2.26) 69.19 (↑ 2.26)

+CWD [29] 69.63 76.00 54.51 63.39 36.84 60.07 (↑ 2.40) 68.92 (↑ 1.99)
+DSD [28] 67.93 76.23 53.23 61.89 40.10 59.84 (↑ 2.17) 68.76 (↑ 1.83)

+CIRKD [27] 69.46 76.11 52.82 63.68 37.28 59.87 (↑ 2.20) 69.07 (↑ 2.14)
+RDD [48] 68.81 75.00 54.65 63.59 43.19 61.05 (↑ 3.38) 69.93 (↑ 3.00)

+Ours 69.06 76.55 56.58 64.49 38.86 61.11 (↑ 3.44) 69.95 (↑ 3.02)

TABLE IV
QUANTITATIVE SEGMENTATION RESULTS FOR OUR PROPOSED BAKD AND OTHER EXISTING METHODS ON THE SERIOUSLY NOISY SUPERVISED

POTSDAM DATASET, SHOWCASING IOU SCORES FOR THE FIVE CLASSES, ALONG WITH THE MIOU SCORE AND mF1 SCORE. THE BEST SCORE IN EACH
COLUMN IS HIGHLIGHTED IN BOLD, WHEREAS THE SECOND-BEST SCORE IS IN UNDERLINE. VALUES WITHIN PARENTHESES INDICATE THE

PERFORMANCE VARIANCE RELATIVE TO THE BASELINE MODEL (STUDENT).

Method IoU mIoU (%) mF1 (%)Imp.Surf. Building Low veg Tree Car
Classification from Noisy Annotations with Co-Learning (CNACL)

+Decoupling [21] 73.52 82.10 66.98 66.75 57.66 69.40 (↑ 0.76) 74.06 (↑ 0.38)
+Co-teaching [22] 74.91 83.02 63.46 63.55 57.31 68.45 (↓ 0.19) 73.49 (↓ 0.19)

+Co-teaching+ [23] 73.75 83.02 67.14 66.42 58.69 69.80 (↑ 1.16) 74.15 (↑ 0.47)
Semantic segmentation from noisy annotations (SSNA)

ADELE [40] 76.01 86.54 67.22 72.91 61.18 72.77 (↑ 4.13) 77.27 (↑ 3.59)
RMD [41] 77.90 86.96 70.78 73.41 55.35 72.88 (↑ 4.24) 77.35 (↑ 3.67)

Semantic segmentation based on KD (SSKD)
Teacher 76.11 86.06 69.64 73.40 61.33 73.91 77.91
Student 75.54 85.97 68.84 70.23 42.64 68.64 73.68

+KD [24] 78.46 87.80 70.74 71.38 57.97 73.27 (↑ 4.63) 77.43 (↑ 3.75)
+AT [30] 77.85 86.70 70.36 72.37 59.74 73.40 (↑ 4.76) 77.81 (↑ 4.13)

+CWD [29] 77.92 87.42 70.56 70.78 57.91 72.92 (↑ 4.28) 77.38 (↑ 3.70)
+DSD [28] 76.21 86.31 68.85 71.21 55.96 71.71 (↑ 2.57) 77.00 (↑ 3.32)

+CIRKD [27] 78.30 86.75 71.48 73.44 59.49 73.89 (↑ 5.25) 78.44 (↑ 4.76)
+RDD [48] 78.17 87.62 71.10 73.00 60.35 74.05 (↑ 5.41) 78.59 (↑ 4.91)

+Ours 78.62 87.08 71.24 73.28 62.22 74.49 (↑ 5.85) 78.78 (↑ 5.10)

BAKD achieved a 12.96% improvement in the IoU for the
car category compared to Co-teaching+. ADELE significantly
improves segmentation performance by correcting incorrect
annotations at the pixel level. When the annotation noise is
more serious, ADELE’s early learning may not occur because
there may not be enough information in the noisy annotations
to correct the errors. As seen from Table III, in the case
of severe noise, ADELE is even worse than the semantic
segmentation based on the KD method. The confidence screen-
ing strategy in the RMD method may excessively remove
small target categories with low confidence, such as Car. In
the face of severe noise, it is not as good as the semantic
segmentation method based on knowledge distillation. BAKD
increased IoU in the car category by 0.57% compared to RMD.
For Mainstream semantic segmentation methods based on
KD (SSKD) method, all structured KD methods improve the

segmentation performance of the student network. Our BAKD
outperforms other KD methods regarding mIoU and mF1 with
significant advantages. Especially in the category of Car, due
to the presence of boundary noise annotations, the IoU of Car
is only 29.07%. However, by optimizing our BAKD method,
the IoU of the Car category is improved by up to 9.79%.
This result highlights the effectiveness of the BAKD method
in solving the challenges posed by noisy annotations. This
implies that BAKD’s segmentation performance improvement
would be more significant if the annotations for all categories
were seriously noisier.

For seriously noisy supervised Potsdam dataset. We also
evaluate our BAKD on the seriously noisy supervised Potsdam
dataset. The experimental results are shown in Table IV. Since
the Potsdam dataset is large in scale, filter-based methods
(CNACL) are less likely to suffer from overfitting. CNACL
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(j)(c) (d) (e) (f) (g) (h) (i)(b)(a)

Fig. 7. Qualitative comparison for our proposed BAKD and other existing semantic segmentation methods based KD on the original annotated Vaihingen
dataset (upper two rows) and Potsdam dataset (lower two rows). From left to right are (a) Input image, (b) Ground Truth, the results of (c) Student, (d)
KD, (e) AT, (f) CWD, (g) DSD, (h) CIRKD, (i) BAKD (Ours), (j) Teacher, respectively. The relatively obvious areas of improvement are marked with red
rectangles. BAKD performs better on the boundary areas.

can improve segmentation performance to a certain extent, but
the improvement effect still has restrictions. For example, in
the small target car category, BAKD improved the IoU of the
car category by 4.56% compared to Decoupling. Compared to
Co-teaching, BAKD enhanced the IoU of the car category by
4.91%. Additionally, BAKD achieved a 3.53% improvement
in the IoU of the car category compared to Co-teaching+.
Furthermore, due to RMD’s exclusion of low-confidence small
target classes during the filtering process, its improvement in
the car category is not as significant as that of BAKD. BAKD
achieved a 6.87% increase in the IoU of the car category
compared to RMD. For Mainstream semantic segmentation
methods based on KD (SSKD) method, all structured KD
methods improve the segmentation performance of the student
network. Our BAKD outperforms other KD methods regarding
mIoU and mF1 with significant advantages. For the Car
category significantly affected by boundary noise, its mIoU
was only 42.64%. However, by optimizing our BAKD method,
the IoU of the Car category increased by 16.58%. This result
again highlighted BAKD’s excellent performance in dealing
with noise labeling challenges.

C. Ablation Study

1) Ablation study about performance comparisons with
mainstream KD methods on original annotated datasets: To
verify the performance of BAKD on the original annotated
datasets, we compare it with mainstream semantic segmen-
tation methods based on KD, including KD [24], AT [30],
CWD [29], DSD [28] and CIRKD [27] on the above two repre-
sentative datasets. In the experiment, we employ DeepLabV3
with ResNet-101 backbone as the teacher network, denoted
as “Teache”, and DeepLabV3 with ResNet-18 backbone as
the student model, denoted as “Student”. The experimental

TABLE V
ABLATION STUDY ABOUT THE PERFORMANCE COMPARISONS WITH

MAINSTREAM KD METHODS ON ORIGINAL ANNOTATED DATASETS. THE
BEST SCORE IN EACH COLUMN IS HIGHLIGHTED IN BOLD. OUR BAKD

OUTPERFORMS OTHER KD METHODS REGARDING MIOU AND mF1 WITH
SIGNIFICANT ADVANTAGES.

Method
Original annotated
Vaihingen dataset

Original annotated
Potsdam dataset

mIoU (%) mF1 (%) mIoU (%) mF1 (%)
Teacher 77.42 83.73 81.79 84.83
Student 74.66 81.56 78.62 81.95

+KD [24] 75.34 (↑ 0.68) 82.11 79.05 (↑ 0.43) 82.67
+AT [30] 75.50 (↑ 0.84) 82.14 80.01 (↑ 1.39) 83.40

+CWD [29] 75.28 (↑ 0.62) 82.04 79.99 (↑ 1.37) 83.84
+DSD [28] 75.44 (↑ 0.78) 82.34 80.14 (↑ 1.52) 83.65

+CIRKD [27] 75.55 (↑ 0.89) 82.34 80.41 (↑ 1.79) 83.91
+Ours 76.00 (↑ 1.34) 82.53 80.70 (↑ 2.08) 84.06

outcomes are detailed in Table V. On both original annotated
datasets, all structured KD methods improve the segmentation
performance of the student network compared to training with-
out KD. Notably, our BAKD exhibits superior performance
in terms of mIoU and mF1 metrics, showcasing significant
advantages over other KD methods. On the original annotated
Vaihingen dataset, compared with the CIRKD method, BAKD
improves the mIoU and mF1 by 0.45% and 0.19%, respec-
tively. On the original annotated Potsdam dataset, compared
with the CIRKD method, BAKD improves the mIoU and
mF1 by 0.29% and 0.15%, respectively. This further proves
that our BAKD still performs well on fine manual annotated
datasets. Furthermore, qualitative results are depicted in Fig. 7,
illustrating the visual impact of our BAKD method.

2) Ablation study about the effect of α: We conduct ablation
experiments to analyze the impact of the parameter α in
the BRE strategy. The parameter α determines the degree of
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TABLE VI
ABLATION STUDY ABOUT THE EFFECT OF α ON THE NOISY SUPERVISED

DATASET. THE BEST SCORE IN EACH COLUMN IS HIGHLIGHTED IN BOLD.

α
Noisy supervised
Vaihingen dataset

Noisy supervised
Potsdam dataset

mIoU (%) mF1 (%) mIoU (%) mF1 (%)
0.2 67.73 76.27 77.47 81.48
0.4 67.87 76.12 77.33 81.20
0.6 68.11 76.33 77.55 81.64
0.8 68.12 76.35 77.68 81.67
1.0 68.14 76.37 77.40 81.64

diffusion of uncertainty around the boundary. For larger α
values, the BR score decreases in smaller regions near the
boundary. Conversely, with smaller α values, the BR score
decreases in larger regions near the boundary. Fine-tuning the
optimal α value according to the degree of boundary noise
in different datasets is crucial for enhancing segmentation
performance. Consequently, we conduct ablation experiments
on two noisy supervised datasets, with the results detailed in
Table VI. Notably, on the noisy supervised Vaihingen dataset,
an α value of 1.0 achieves the best segmentation performance.
Similarly, on the noisy supervised Potsdam dataset, an α value
of 0.8 achieves the optimal segmentation results.

3) Ablation study about the different student networks:
To verify the effectiveness and robustness of our BAKD,
we evaluate various student networks on the noisy, super-
vised Potsdam dataset. In experiments, we adopt DeepLabV3
with ResNet-101 backbone (DeepLabV3-Res101) as the
teacher network. DeepLabV3 with ResNet-18 backbone
(DeepLabV3-Res18), DeepLabV3 with MobileNetV2 back-
bone (DeepLabV3-MBV2) and PSPNet with ResNet-18 back-
bone (PSPNet-Res18) as student networks. The experimental
results are presented in Table VII. Notably, BAKD achieves
considerable results in all student networks, proving the ro-
bustness of BAKD to changes in student network architecture.
When using a more robust backbone network, performance
improves and even exceeds the performance of the teacher
network. Like other semantic segmentation methods based
on knowledge distillation, BAKD does not modify the model
architecture. Therefore, the parameters (Params) of the model
and the floating point operations (FLOPs) resulting from
inference remain consistent with the underlying backbone
network. Specifically, for all methods where the student model
is DeepLabV3-Res18, the FLOPs are 85.98G and the Params
are 13.61M. Similarly, for all methods where the student model
is PSPNet-Res18, the FLOPs are 67.51G, and the Params
are 12.92M. It should be noted that we use lightweight Mo-
bileNetV2 as the backbone network, aiming to verify BAKD’s
performance on lightweight networks to explore the possibility
of deploying BAKD on mobile devices. As can be seen
from the table, although the model based on MobileNetV2
has fewer parameters and fewer calculations (22.62G FLOPs,
3.23M Params), its mIoU reaches 76.80%. This shows that
our method is also suitable for more lightweight models, such
as SqueezeNet [53] series and ShuffleNet [54], [55] series.
BAKD can achieve high segmentation accuracy while using as
few computing resources and parameters as possible, thereby

TABLE VII
ABLATION STUDY ABOUT DIFFERENT STUDENT NETWORKS ON THE

NOISY SUPERVISED POTSDAM DATASET. FLOPS ARE MEASURED BASED
ON THE TEST SIZE OF 512 × 512. * DENOTES THAT NOT INITIALIZE THE

BACKBONE WITH IMAGENET [52] PRE-TRAINED WEIGHTS. THE BEST
SCORE IN EACH COLUMN IS HIGHLIGHTED IN BOLD. BAKD ACHIEVED

CONSIDERABLE RESULTS IN ALL STUDENT NETWORKS.

Method mIoU(%) mF1 (%) FLOPs(G) Params(M)
T: DeepLabV3-Res101 77.21 81.27 384.41 61.11
S: DeepLabV3-Res18 73.99 78.84 85.98 13.61+BAKD 77.68 (↑ 3.69) 81.67
S: DeepLabV3-Res18* 72.56 78.13 85.98 13.61+BAKD 77.41 (↑ 4.85) 81.50
S: DeepLabV3-MBV2 73.55 78.38 22.62 3.23+BAKD 76.80 (↑ 3.25) 81.08

S: PSPNet-Res18 73.63 78.33 67.51 12.92+BAKD 77.49 (↑ 3.86) 81.28

better deploying in resource-constrained RSI environments
such as embedded and mobile devices. We qualitatively eval-
uate the student network utilizing DeepLabV3 with ResNet-
18 as the backbone network on the unprocessed large-size
Potsdam test set. As illustrated in Fig. 8, the segmentation
results generated by the student model trained with the BAKD
approach exhibit closer alignment with the ground truth.

4) Ablation study of components in BAKD: We conduct
ablation experiments on the noisy supervised Potsdam dataset
to evaluate the effectiveness of two uncertainty evaluation
strategies. The results are summarized in Table VIII. Among
them: Experimental group (a) means that only the predictive
confidence score (PC) is used to participate in the loss
calculation of the segmentation task. The results indicate that
the PCE strategy can improve the segmentation performance
of the student network to a certain extent. The experimental
group (b) employs only the boundary-annotated reliability
score (BR) in the loss calculation, which can also improve
the student network’s segmentation performance. However, the
effect is slightly weaker than the BR score. The experimental
group (c) computes the final boundary-aware weight WBAW

by averaging the PC and BR scores for participation in the
loss calculation. The experimental group (d) means that the
minimum weight between PC and BR for each pixel is se-
lected as the final boundary-aware weight WBAW for inclusion
in the loss calculation. The results suggest that considering
these two types of uncertainty information can better identify
samples with potentially noisy annotations, thereby mitigating
the impact of noisy annotations on knowledge distillation.
Given that the BR score near the center tends to approach
1, the averaging method might diminish the impact of PC,
while selecting the minimum weight can better emphasize the
combined effect of both scores.

5) Ablation study about three ways of generating different
BR scores: We conduct ablation experiments on the three
methods of using boundary maps to generate different BR
scores discussed in the BRE strategy on the noisy super-
vised Potsdam dataset. The experimental results are shown
in Table IX. Comparing not using the BRE strategy, the BR
score generated by the three methods enhances the model’s
segmentation performance. Specifically, the Gaussian blur only
averages pixels closest to the boundary to a smaller value
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(a) Input image (b) Ground Truth

(c) DeepLabV3-Res18 (baseline) (d) BAKD (Ours)

Fig. 8. Qualitative comparison for our proposed BAKD and the baseline student network on the unprocessed large-size Potsdam test set. The relatively
obvious areas of improvement are marked with red rectangles.

TABLE VIII
THE EFFECT OF COMPONENTS IN THE PROPOSED METHOD ON THE NOISY
SUPERVISED POTSDAM DATASET. THE BEST SCORE IN EACH COLUMN IS

HIGHLIGHTED IN BOLD. MIN COMBINATION FULLY PLAYS A ROLE IN THE
ADVANTAGES OF THE TWO EVALUATION STRATEGIES.

Method PCE BRE Combination mode mIoU (%) mF1 (%)
T: DeepLabV3-Res101 77.21 81.27
S: DeepLabV3-Res18 73.99 78.84

(a) ✓ 77.11 81.13
(b) ✓ 76.98 80.85
(c) ✓ ✓ Average combination 77.29 81.31
(d) ✓ ✓ Min combination 77.68 81.67

after the Gaussian smoothing operation. This method is not
ideal for data with seriously noisy annotations. In contrast, the
min-max normalization assigns smaller weights to a broader
range of pixels near the boundary, potentially leading to
insufficient training samples and overfitting. The exponential
normalization can flexibly use the noise level at the boundary
of the dataset to adjust the BR of each pixel, thereby flexibly
controlling the distribution of BR scores in the boundary
regions. Therefore, this method achieves the best performance.

6) Ablation study about the effect of warm-up iteration ratio:
To enable the student network to quickly have a certain ability
to judge the annotation’s uncertainty, in the early stage of
training, we adopted a method similar to “Warm-up” training.
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TABLE IX
ABLATION EXPERIMENT ABOUT THREE WAYS OF GENERATING DIFFERENT
BR. THE BEST SCORE IN EACH COLUMN IS HIGHLIGHTED IN BOLD. THE

PARAMETERIZED EXPONENTIAL FUNCTION NORMALIZATION METHOD
OUTPERFORMED OTHER BR GENERATION METHODS.

Way of generate BR mIoU(%) mF1 (%)

Without BR 77.11 81.13
Gaussian blur 77.56 81.39

Min-max normalization 77.43 81.44
Exponential normalization (Ours) 77.68 81.67

TABLE X
THE EFFECT OF WARM-UP ITERATION RATIO IN THE PROPOSED PCW

STRATEGY ON THE NOISY SUPERVISED POTSDAM DATASET. THE BEST
SCORE IN EACH COLUMN IS HIGHLIGHTED IN BOLD.

Method λ Warm-up mIoU (%) mF1 (%)
T: DeepLabV3-Res101 77.21 81.27
S: DeepLabV3-Res18 (without KD) 73.99 78.84

(a) [0, 0.5] 0% 77.35 81.32
(b) [0, 0.5] 10% 77.68 81.67
(c) [0, 0.5] 20% 77.43 81.52
(d) [0, 0.5] 30% 77.25 81.29

Provide supervision information through the teacher network
to guide the student network in learning relatively correct
supervised samples to achieve rapid convergence. The training
at this stage should be short to avoid a long warm-up phase that
cannot fully utilize the potential of the student model itself. To
determine the optimal scale parameter, we try different scales
from 0% to 30% to evaluate the performance of the student
model at different scales, as shown in Table X. The results
demonstrate that using a warm-up strategy in the initial 10% of
training iterations leads to the best segmentation performance.

7) Ablation study about the effect of λ: We conducted
ablation experiments on the parameter λ to explore the in-
fluence of Knowledge Distillation (KD) on BAKD within the
PUW strategy. Here, λ adjusts the weight ratio between the
student and teacher networks in this strategy. In Table XI,
“λ=0” indicates λ set to 0, utilizing only the teacher network’s
evaluation score as PC. “λ=1” indicates λ set to 1, and using
only the student model’s evaluation score as PC. “λ=[0,1]”
indicates λ gradually increases from 0 to 1 during training
iterations. The evaluation score of the student network grad-
ually participates in calculating PC. Similarly, “λ=[0,0.3]”
indicates a gradual increase from 0 to 0.3 in λ during training.
“λ=[0,0.5]” indicates a gradual increase from 0 to 0.5 in
λ during training. “λ=[0,0.7]” indicates a gradual increase
from 0 to 0.7 in λ during training. In Fig. 9, we present the
confidence score maps for groups (i), (ii), and (iv), as well
as the baseline strategy that solely uses the student network
for training. When iteration= 0, the student network has not
yet been trained, resulting in low prediction confidence scores
for each pixel. At this stage, relying entirely on the immature
student network to provide sample weights can amplify errors,
posing challenges for the student network’s correction. In
contrast, the pre-trained teacher network offers more reliable
confidence scores. Therefore, in the early training stage, we
utilize the supervisory information provided by the teacher
network to assist the student network in converging rapidly.

TABLE XI
THE EFFECT OF λ IN THE PROPOSED PCW STRATEGY ON THE NOISY

SUPERVISED POTSDAM DATASET. THE BEST SCORE IN EACH COLUMN IS
HIGHLIGHTED IN BOLD.

Method λ Warm-up mIoU (%) mF1 (%)
T: DeepLabV3-Res101 77.21 81.27
S: DeepLabV3-Res18 (without KD) 73.99 78.84

(i) 0 10% 77.02 81.09
(ii) 1 10% 76.86 80.91
(iii) [0, 0.3] 10% 76.93 81.01
(iv) [0, 0.5] 10% 77.68 81.67
(v) [0, 0.7] 10% 77.32 81.27
(vi) [0, 1.0] 10% 77.11 81.18

Upon examining the confidence maps for groups (i), (ii),
and (iv), we observe the following finding: Group (i) relies
entirely on the teacher network to provide sample weights.
Although its predicted confidence is relatively reliable in the
early iterations, its influence gradually diminishes as training
progresses. In contrast, group (ii) depends solely on the
immature student network for sample weights, resulting in less
reliable predicted confidence in the early iterations compared
to groups (ii) and (iv). This reliance can amplify errors and
increase the difficulty of corrections for the student network.
In contrast, the prediction results of group (iv) show higher
consistency with the semantic boundaries of the labels.

Additionally, we conducted a sensitivity analysis on the λ
to investigate the impact of different final λ values on model
performance. The experimental results demonstrate that the
model performs optimally when the final λ = 0.5. Further
analysis reveals that when the final λ = 0.3, the student net-
work’s participation in the later training stages is insufficient,
leading to limited contributions to the evaluation of predictive
confidence. This prevents the model from fully leveraging the
student network’s gradually improving cognitive capabilities
during training. Conversely, when the final λ = 0.7, the teacher
network’s supervisory role is relatively weakened in the later
training stages, making the model more susceptible to the
student network’s inaccurate predictions, thereby affecting the
overall convergence speed and model’s stability. Therefore, fi-
nal λ = 0.5 achieves a well-balanced collaboration between the
teacher and student networks. It ensures the teacher network’s
reliable supervision in evaluating predictive confidence during
the early training stages while fully leveraging the student
network’s contributions to predictive confidence evaluation in
the later training stages.

8) Ablation study about different noise types: To thoroughly
investigate the impact of different types of noise annotations
on model performance, we conducted experiments with three
types of noise annotations on the Vaihingen datasets. By
comparing the experimental results of different noise types,
we can comprehensively evaluate the model’s performance
under relatively realistic noise data. As shown in Table XII,
the experimental results demonstrate that our BAKD method
effectively improves both mIoU and BF scores under various
noise conditions. These findings validate the robustness and
effectiveness of our approach, further confirming its applica-
bility in handling different types of annotation noise.
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(a) Confidence score maps of the teacher and student networks at iteration = 0

(b) Confidence score maps and prediction results of the student network at

different iterations

Fig. 9. The influence of different λ on confidence score maps at different
training iterations (Iters).

TABLE XII
ABLATION STUDY ABOUT DIFFERENT NOISE TYPES ON THE NOISY

SUPERVISED VAIHINGEN DATASET.

Noisy type Method mIoU (%) mF1 (%)

Dilation Noise Student 64.99 73.89
BAKD 68.14 (↑ 3.15) 76.37 (↑ 2.48)

Erosion Noise Student 61.38 70.02
BAKD 66.51 (↑ 5.03) 75.13 (↑ 5.11)

Shift Noise Student 66.02 74.94
BAKD 69.63 (↑ 3.61) 77.27 (↑ 2.33)

D. Integrating with Existing KD methods and training time

To show that our method is complementary to other seman-
tic segmentation based on KD methods, we evaluate the perfor-
mance impact of integrating BAKD into existing KD methods
on the noisy supervised Vaihingen and Postdam datasets. We
use DeepLabV3-Res18 as the student network and explore
the effectiveness of BAKD in the simplest integrated way
under the experimental settings of the original method without
changing any hyperparameters. The experimental results are
shown in Table XIII. Among the five baseline methods,
BAKD effectively improves all methods’ performance and

TABLE XIII
INTEGRATING WITH EXISTING KD METHODS ON NOISY SUPERVISED

VAIHINGEN AND POTSDAM DATASETS. “+” DENOTES IMPLEMENTING THE
CORRESPONDING SCHEMES. VALUES WITHIN PARENTHESES INDICATE

THE PERFORMANCE VARIANCE RELATIVE TO EACH KD METHOD. BAKD
EFFECTIVELY IMPROVES THE PERFORMANCE OF ALL KD METHODS.

Method
Noisy supervised
Vaihingen dataset

Noisy supervised
Potsdam dataset

mIoU (%) mF1 (%) mIoU (%) mF1 (%)
Teacher 68.79 77.04 77.21 81.27
Student 64.99 73.89 73.99 78.84
AT [30] 67.13 75.63 76.97 80.98
+BAKD 67.47(↑ 0.34) 75.75 77.53 (↑ 0.56) 81.42

CWD [29] 66.14 75.03 76.42 80.84
BAKD 66.76(↑ 0.62) 75.40 77.48 (↑ 1.06) 81.35

DSD [28] 66.67 75.11 75.79 79.89
+BAKD 67.03(↑ 0.36) 75.47 77.65 (↑ 0.67) 81.56

CIRKD [27] 67.23 75.83 77.28 81.24
+BAKD 67.90(↑ 0.67) 76.12 77.89 (↑ 0.61) 81.52
KD [24] 66.34 74.96 76.45 80.86

+BAKD (Ours) 68.14 (↑ 1.80) 76.37 77.68 (↑ 1.23) 81.67

increases the student model’s robustness to noisy annotations.
Specifically, for the noisy supervised Vaihingen dataset, after
integrating BAKD, the mIoU of the AT method increased by
0.34%, the mIoU of the CWD method increased by 0.62%, the
mIoU of the DSD method increased by 0.36%, the mIoU of the
CIRKD method increased by 0.67%, and the mIoU of the KD
method increased by 1.80%. For the noisy supervised Postdam
dataset, after integrating BAKD, the mIoU of the AT method
increased by 0.56%, the mIoU of the CWD method increased
by 1.06%, the mIoU of the DSD method increased by 1.86%,
the mIoU of the CIRKD method increased by 0.61%, and
the mIoU of the KD method increased by 1.23%. BAKD
extends these KD methods’ applicability in handling noisy
annotations. Fig. 10 compares prediction maps for methods
with and without BAKD integration on the noisy supervised
Postdam dataset. The visualization results of the methods
integrated with BAKD generally perform better on complex
regions such as edges and obscured objects.

Furthermore, we compare using the same student network to
ensure consistent computational load and parameters, thereby
assessing the time resource consumption differences between
BAKD and existing related methods. Table XIV presents the
experimental results comparing training times. Since Decou-
pling, Co-teaching, and RMD methods require training two
networks simultaneously, their training time is relatively long,
even exceeding that of a complex teacher network. In contrast,
the KD method based on the offline teacher network only
needs to train one student network, and the training time is
relatively low. The ADELE method necessitates calculating
and recording the IoU values for each pixel during every train-
ing iteration, leading to significant computational overhead.
Since BAKD can be integrated with KD methods, we also
obtained the training times before and after combining various
KD methods with BAKD. Table XIV shows that among the
numerous KD methods, BAKD only adds 13 minutes to the
baseline KD method. In contrast, the training times for the AT,
CWD, DSD, and CIRKD methods are all longer than those for
BAKD. Notably, the CIRKD method employs a memory bank
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Fig. 10. Predictions of KD methods with and without integrating BAKD. BAKD performs better on complex regions such as edges and obscured objects.

for contrastive learning. It requires optimizing five loss terms,
resulting in 6 hours and 10 minutes of training, almost twice
as long as other methods. This also verifies the problem that
adding multiple optimization objectives will increase training
difficulty and time. This comparison concludes that integrating
RDD does not incur excessive computational overhead or
training time. It only incurs an average increase of less than
8% in training time across different methods.

V. LIMITATIONS

The BAKD method focuses on effectively handling the
ubiquitous semantic boundary noise. The effectiveness of
the boundary-annotated reliability evaluate (BRE) strategy in
BAKD is largely affected by the quality of the initial annota-
tions. When the annotation quality at the semantic boundary
is low, the BRE strategy can play a positive role. However, in
the case where there is less noise on semantic boundaries, the
performance gain of the BRE strategy is not significant.

VI. CONCLUSIONS

We propose the Boundary-aware Knowledge Distillation
method (BAKD) for the RSI semantic segmentation task with

TABLE XIV
COMPARISON OF TRAINING TIME FOR EXPERIMENTS WITH AND WITHOUT

BAKD INTEGRATION.

Method Cost

T: DeepLabV3-Res101 5 h 36 m
S: DeepLabV3-Res18 2 h 43 m

Decoupling [21] 6 h 33 m
Co-teaching [22] 5 h 34 m

Co-teaching+ [23] 5 h 04 m
ADELE [40] 6 h 45 m
RMD [41] 6 h 34 m

AT [30] 3 h 34 m
AT [30] with BAKD 3 h 50 m (↑ 7.84%)

CWD [29] 4 h 44 m
CWD [29] with BAKD 4 h 56 m (↑ 4.23%)

DSD [28] 3 h 40 m
DSD [28] with BAKD 3 h 54 m (↑ 6.36%)

CIRKD [27] 6 h 10 m
CIRKD [27] with BAKD 6 h 24 m (↑ 3.78%)

KD [24] 2 h 58 m
KD [24] with BAKD (Ours) 3 h 11 m (↑ 7.30%)

noisy annotations. BAKD includes two evaluation strategies,
which leverage the predictive confidence of the teacher and
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student networks, along with the boundary-annotated relia-
bility, to identify samples with potentially noisy annotations
and adjust the learning process accordingly. BAKD has good
scalability and is easy to integrate with existing distillation
methods to further improve the robustness of noisy anno-
tations. Experimental results show that BAKD outperforms
mainstream knowledge distillation methods.

In this study, we focused on the semantic segmentation task
of remote-sensing images with noisy annotations. The BAKD
method effectively utilizes relatively easy-to-obtain rough an-
notations for training, thereby reducing manual annotation
costs. However, the BAKD method’s applicability is limited
under certain noise conditions. In future research, we will
explore more suitable evaluation methods for annotations with
different noise types (such as Gaussian or more complex mixed
noise) and varying noise levels, aiming to enhance the model’s
robustness and generalization ability across various practical
application scenarios. At the same time, we plan to further
explore BAKD’s application potential in other visual tasks
(such as classification and detection) to promote the develop-
ment of training technology under noisy supervised datasets.
Moreover, although this study has examined the segmentation
performance of BAKD across different student architectures,
we will also focus on the performance of BAKD on more
lightweight student models (such as SqueezeNet series and
ShuffleNet series) in resource-constrained RSI environments
in future work.
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